Correction for Adaptor protein 2–mediated endocytosis of the β-secretase BACE1 is dispensable for amyloid precursor protein processing

نویسندگان

  • Yogikala Prabhu
  • Patricia V. Burgos
  • Christina Schindler
  • Ginny G. Farías
  • Javier G. Magadár
  • Juan S. Bonifacino
چکیده

The β-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) is a transmembrane aspartyl protease that catalyzes the proteolytic processing of APP and other plasma membrane protein precursors. BACE1 cycles between the trans-Golgi network (TGN), the plasma membrane, and endosomes by virtue of signals contained within its cytosolic C-terminal domain. One of these signals is the DXXLL-motif sequence DISLL, which controls transport between the TGN and endosomes via interaction with GGA proteins. Here we show that the DISLL sequence is embedded within a longer [DE]XXXL[LI]-motif sequence, DDISLL, which mediates internalization from the plasma membrane by interaction with the clathrin-associated, heterotetrameric adaptor protein 2 (AP-2) complex. Mutation of this signal or knockdown of either AP-2 or clathrin decreases endosomal localization and increases plasma membrane localization of BACE1. Remarkably, internalization-defective BACE1 is able to cleave an APP mutant that itself cannot be delivered to endosomes. The drug brefeldin A reversibly prevents BACE1-catalyzed APP cleavage, ruling out that this reaction occurs in the endoplasmic reticulum (ER) or ER-Golgi intermediate compartment. Taken together, these observations support the notion that BACE1 is capable of cleaving APP in late compartments of the secretory pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Snapin-mediated BACE1 retrograde transport is essential for its degradation in lysosomes and regulation of APP processing in neurons.

β site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) is the major β secretase for generating β-amyloid (Aβ) peptides. The acidic environment of endosomes is optimal for β secretase activity. However, the mechanisms regulating BACE1 traffic from endosomes to lysosomes for degradation are largely unknown. Here, using snapin-deficient mice combined with gene rescue experiments, we reve...

متن کامل

Heparan sulfate regulates amyloid precursor protein processing by BACE1, the Alzheimer's β-secretase

Cleavage of amyloid precursor protein (APP) by the Alzheimer's beta-secretase (BACE1) is a key step in generating amyloid beta-peptide, the main component of amyloid plaques. Here we report evidence that heparan sulfate (HS) interacts with beta-site APP-cleaving enzyme (BACE) 1 and regulates its cleavage of APP. We show that HS and heparin interact directly with BACE1 and inhibit in vitro proce...

متن کامل

Specific Inhibition of β-Secretase Processing of the Alzheimer Disease Amyloid Precursor Protein.

Development of disease-modifying therapeutics is urgently needed for treating Alzheimer disease (AD). AD is characterized by toxic β-amyloid (Aβ) peptides produced by β- and γ-secretase-mediated cleavage of the amyloid precursor protein (APP). β-secretase inhibitors reduce Aβ levels, but mechanism-based side effects arise because they also inhibit β-cleavage of non-amyloid substrates like Neure...

متن کامل

Dropping the BACE: Beta Secretase (BACE1) as an Alzheimer’s Disease Intervention Target

The β-site amyloid precursor protein cleaving enzyme 1 (BACE1) is an important regulator for the production of amyloid plaques, a characteristic of the Alzheimer’s disease (AD) brain. The proteolytic cleavage of the amyloid precursor protein (APP), by BACE1, produces an insoluble amyloid-β (Aβ) fragment which has the ability to aggregate and migrate onto the dendrites and cell body of neuronal ...

متن کامل

CHIP stabilizes amyloid precursor protein via proteasomal degradation and p53-mediated trans-repression of β-secretase

In patient with Alzheimer's disease (AD), deposition of amyloid-beta Aβ, a proteolytic cleavage of amyloid precursor protein (APP) by β-secretase/BACE1, forms senile plaque in the brain. BACE1 activation is caused due to oxidative stresses and dysfunction of ubiquitin-proteasome system (UPS), which is linked to p53 inactivation. As partial suppression of BACE1 attenuates Aβ generation and AD-re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2012